From GMM to HGMM: An Approach In Moving Object Detection

نویسندگان

  • Yunda Sun
  • Baozong Yuan
  • Zhenjiang Miao
  • Wei Wu
چکیده

Background subtraction methods are widely exploited for moving object detection in many applications. A key issue to these methods is how to model and maintain the background correctly and efficiently. This paper describes a foreground detector used in our surveillance system characterized by multiple Gaussian statistics. Compared with the existing methods, our Gaussian mixture model (GMM) differs in model initialization, matching, classification and updating. We propose a fast on-line initialization algorithm to train GMM parameters quickly and correctly. All components of the GMM are classified into three kinds: moving object model, still life model and background model, which is effective for complete detection within a certain period of time. GMMs at different scales are organized in a hierarchical manner to handle sharp illumination changes as well as gradual ones. A convenient way to combine luminance distortion with chrominance distortion is presented for shadow detection in complex scenes. Extensive experimental results are provided to highlight the advantages of our detector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

Detection and Tracking of Moving Object Based on Background Subtracion

The proposed work presents a survey on moving object detection and tracking methods. It is classified into different categories and new trends identify. This work shows moving object detection and tracking using different and efficient methodologies. Object detection and object tracking is used to track the object type(such as human, vehicles) and detect the movement of the object(such as movin...

متن کامل

Statistical Background Modeling Based on Velocity and Orientation of Moving Objects

Background modeling is an important step in moving object detection and tracking. In this paper, we propose a new statistical approach in which, a sequence of frames are selected according to velocity and direction of some moving objects and then an initial background is modeled, based on the detection of gray pixel's value changes. To have used this sequence of frames, no estimator or distribu...

متن کامل

A Novel Approach to Shadow Detection in Video-based Virtual Reality Interaction

When detecting moving shadow for video-based virtual reality interaction (VBVRI), we need not concern the original moving object that casts the shadow. It is based on this feature of application that a novel algorithm of moving shadow detection is proposed in this paper, which primarily introduces a two-step shadow discriminator and an improvement upon the classical Gaussian Mixture Model (GMM)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers and Artificial Intelligence

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2004